イワタ マサヒロ   IWATA, Masahiro
  岩田 全広
健康科学部 リハビリテーション学科
准教授
言語種別 英語
発行・発表の年月 2017/03
形態種別 学術雑誌
査読 査読あり
標題 Heat Stress Modulates Both Anabolic and Catabolic Signaling Pathways Preventing Dexamethasone-Induced Muscle Atrophy in Vitro.
執筆形態 共同
掲載誌名 J. Cell Physiol.
掲載区分国外
巻・号・頁 232(3),pp.650-664
著者・共著者 Tsuchida W, Iwata M, Akimoto T, Matsuo S, Asai Y, Suzuki S
概要 It is generally recognized that synthetic glucocorticoids induce skeletal muscle weakness, and endogenous glucocorticoid levels increase in patients with muscle atrophy. It is reported that heat stress attenuates glucocorticoid-induced muscle atrophy; however, the mechanisms involved are unknown. Therefore, we examined the mechanisms underlying the effects of heat stress against glucocorticoid-induced muscle atrophy using C2C12 myotubes in vitro, focusing on expression of key molecules and signaling pathways involved in regulating protein synthesis and degradation. The synthetic glucocorticoid dexamethasone decreased myotube diameter and protein content, and heat stress prevented the morphological and biochemical glucocorticoid effects. Heat stress also attenuated increases in mRNAs of regulated in development and DNA damage responses 1 (REDD1) and Kruppel-like factor 15 (KLF15). Heat stress recovered the dexamethasone-induced inhibition of PI3K/Akt signaling. These data suggest that changes in anabolic and catabolic signals are involved in heat stress-induced protection against glucocorticoid-induced muscle atrophy. These results have a potentially broad clinical impact because elevated glucocorticoid levels are implicated in a wide range of diseases associated with muscle wasting.
DOI 10.1002/jcp.25609